

DCK-003-2016003 Seat No. _____

B. Sc. (Sem. VI) (CBCS) (W.E.F.-2019) Examination

July - 2022

Mathematics: BSMT-10[A] (Theory) (Optimization & Numerical Analysis-2)

Faculty Code: 003 Subject Code: 2016003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All the questions are compulsory.
- (2) Numbers written to the right indicate full marks of the question.
- 1 (a) Answer the following questions briefly:
- $\mathbf{4}$

- (1) Define: Feasible Points.
- (2) Define: Initial feasible Solution.
- (3) Define: Convex Sets.
- (4) Define: Optimal Points.
- (b) Answer any **one** out of **two**:

 $\mathbf{2}$

- (1) State the Matrix form of LPP.
- (2) Define: Slack and Surplus Variables.
- (c) Answer any **one** out of **two**:

3

(1) Write the dual:

Min
$$Z = x_1 + 2x_2$$

 $2x_1 + 4x_2 \le 160$,
 $x_1 - x_2 = 30$,
 $x_1 \ge 10$
 $x_1, x_2 \ge 0$

- Explain Graphical Method.
- (d) Answer any **one** out of **two**:

- 5
- (1) Explain all the steps of Two Phase method.
- (2) Explain all the steps of Simplex method.

(2)

2 (a) Answer the following questions briefly:

4

- (1) Write the full form of NWCM.
- (2) A feasible solution of a transportation problem involves _____ number of allocations.
- (3) Give the full form of LCM.
- (4) Write the full form of VAM.
- (b) Answer any one out of two:

2

- (1) Explain the mathematical form of Assignment problem.
- (2) Explain LCM for solving Transportation Problem.
- (c) Answer any one out of two:

3

(1) Find the initial solution by LCM:

	То			Supply	
		W_1	W_2	W_3	
From	P_1	2	7	4	5
	P_2	3	3	1	8
	P_3	5	4	7	7
	P_4	1	6	2	14
Demand		7	9	18	34

- (2) State the Mathematical form of Transportation Problem.
- (d) Answer any one out of two:

5

- (1) Explain Hungerian method to solve Assignment Problem.
- (2) Solve the following Assignment problem:

	Men					
		1	2	3	4	
	Ι	12	30	21	15	
Jobs	II	18	33	9	31	
	III	44	25	24	21	
	IV	23	30	28	14	

3 (a) Answer the following questions briefly:

Δ

- (1) Gauss Backward interpolation formula is obtained from which interpolation formula?
- (2) Laplace-Everett's formula is accurate for which range of p ?

(3)	For which	value of p	the special	case of	Bessel's
	formula is	obtained?			

- (4) Which interpolation formula is considered to be universal interpolation formula?
- (b) Answer any one out of two:

2

- (1) Explain inverse interpolation.
- (2) Write any two properties of divided differences.
- (c) Answer any one out of two:

3

- (1) If $f(x) = x^3 2x$, then compute f(2,4,9,10).
- (2) Find the polynomial satisfied by the following values using Newton's Formula:

	X	-4	-1	0	2	5
F	$\vec{r}(x)$	1245	33	5	9	1335

(d) Answer any one out of two:

5

- (1) Derive Gauss's Backward interpolation formula.
- (2) Derive Stirling's formula.
- 4 (a) Answer the following questions briefly:

4

- (1) What is Numerical Integration?
- (2) Which formula is known as Newton Cote's formula?
- (3) Write the value of n to obtain Simpson's 1/3 Rule.
- (4) What is the value of n to obtain Trapezodial Rule?
- (b) Answer any **one** out of **two**:

 $\mathbf{2}$

- (1) Write the formula for Simpson's 3/8 Rule.
- (2) In usual notation prove that:

$$D^{3} = \frac{1}{h^{3}} \left[\nabla^{3} + \frac{3}{2} \nabla^{4} + \frac{7}{4} \nabla^{5} + \dots \right].$$

(c) Answer any **one** out of **two**:

3

- (1) Find the value of $\int_{2}^{6} \frac{dx}{x}$ using Simpson's 1/3 rule.
- (2) Derive General Quadrature formula.

(d) Answer any one out of two:

- (1) Obtain the general formula to find first and second derivatives using Newton's forward interpolation formula.
- (2) Derive Simpson's 1/3 Formula.
- **5** (a) Answer the following questions briefly:

4

- (1) To apply Milne's method at least how many values are priorly required?
- (2) The auxiliary equation k_1 obtain by Range-Kutta for the differential equation

$$\frac{dy}{dx} = x^2 + y^2, y(0) = 1$$
 when $h = 0.1$, is _____

- (3) Write Euler's formula to solve ordinary differential equation.
- (4) Write Milne's Predictor formula to solve ordinary differential equation.
- (b) Answer any **one** out of **two**:

2

- (1) Find the value of y(0.2) by Euler's method by taking h=2 for $\frac{dy}{dx}=2x+y, y(0)=1$.
- (2) Write the algorithm of RK method of second order.
- (c) Answer any **one** out of **two**:

3

- (1) Explain Picard's Method to solve ordinary differential equation.
- (2) Solve $\frac{dy}{dx} = 1 y, y(0) = 0$ in the range $0 \le x \le 0.3$ using modified Euler's method.
- (d) Answer any one out of two:

5

- (1) Explain Milne's Predictor and Corrector method to solve ordinary differential equation.
- (2) Explain Runge's method to solve the differential

equation
$$\frac{dy}{dx} = f(x,y), y(x_0) = y_0$$
.